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Motivation of the Research
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Review of Previous Models

conservation
equation only

e NO orography

AMR = Adaptive Mesh Refinement

Advection | Shallow water Compressible or
only equations hydrostatic models
No Qualitative e time step restricted by
AMR model: sound/gravity waves
e Wwave equation e terrain following
coordinates
e hydrostatic BVP is not
well-posed
AMR emass Current research:

e time step restricted by
advection only

e EB formulation
» well-posed BVP for AMR




Time steps

Typical cell: AXx = 1.5km - Az = 200m

: AX, Az
Time step Wave speed, ¢ At = 1A, Az}
limitation C

Vertical acoustic 343 m/s ~0.6 s

waves

Horizontal gravity 200 M/s ~7.5s

waves
Horizontal 20 m/s ~75 s

advection




Research Objective

e Develop a well-posed boundary value
problem for gravitationally stratified flows
to use In an AMR framework

e Applications
- Atmospheric modeling
- Astrophysics



Algorithmic Requirements

e Use advective time step

== Implicit treatment of acoustic and gravity waves

e Adaptive Mesh Refinement (AMR)

== Well-posed boundary-value formulation
of the equations

e Orography
== Cut-cell methods for irregular boundaries
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Euler Equations for a
Compressible Fluid

Mass conservation

Momentum

Pressure
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Separating Out the Acoustic
Waves: Hodge Decomposition

u

+
U, | up
total velocity iIncompressible compressible

vortical motions | motions

div(uy)=0 u, = grad(¢)




Separating Out the Acoustic
Waves: Projection Method

Incom-
pressible
flow and
advective
transport

Acoustic
equations

(- )
O ) 4 }
+ div 0]
/at (puU) =
Bud Eﬂi
+ u+* rad(m) + P, rad5+
ot Ad pg (71) g
/
[ 0o + U.grad(;r+ 9) + pczdlv(up) +W0po k + I }
\_ ot ot ot J

Incompressible flow == semi-implicit formulation

Acoustic waves == implicit formulation



Separating Out the Acoustic
Waves: Projection Method

e Incompressible equations
- Poisson-like equation for the pressure
- Explicit treatment of advection

e Acoustic equations
- Backward-Euler

- Implicit treatment == Helmholtz equation
for the acoutic pressure

== Well-posed boundary problems for AMR



Separating Out Fast
Gravity Waves

e |Isolate incompressible flow and gravity terms

/" ug , owg 3 B
0X 0z

p,(2):background
L a7TH + aud - stratification
SEOt THOX A

OF Sodilet v 0
Ougy 5 1 Jdry _ 1 L =5, dp. ag° Second order
= do, LT

ot 0o P u g d self-adjoint operator
OITH

\ o8-
e This set of equations is equivalent to the set of
Incompressible equations in (uy,p)




Separating Out Fast
Gravity Waves

e Decomposition on eigenvectors
d SOGOE K
=3 (2)
H k H(X,t)

k A - = -
e Hd msatisfy the wave equation in X with
4 wave speed A = eigenvalues of /2



Separating Out Fast
Gravity Waves

Eigenvalues of L,1/2 = speed of gravity waves

Eigenvalue

10’

10
0

Mode number
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Overview of the Algorithm

N, RV V5
ot ox 0z

e Implicit treatment of acoustic waves using splitting

e Semi-implicit (explicit for advection)
for incompressible advection

e Splitting of fast horizontal gravity waves
from dynamics

e Use embedded boundaries for orography



Cartesian Grid Embedded
Boundary methods

1 |

e PDEs written in conservation form
ouU - 1 .
~—~ + [.F(u 0] .F = = rO.FdV =
ot W)= V J

e Away from boundaries: standard finit

discretization

1 (F.Ad
Vs
e-difference



Cartesian Grid Embedded
Boundary methods

Advantages of underlying rectangular grid
e Grid generation iIs tractable (T. Deschamps’ talk)
e Well-understood

e Straightforward coupling to structured AMR

Large aspect ratio (1/10) introduces new issues

e Line solver for multigrid method
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Results for a 2-Layered

Atmosphere
AXx=1406.25m N: Brunt-Vaisala frequency
Az=200m e N,>N,: stable
At =5s e N,>N,: instable
u,=20m/s
—>
—>
—>
—>
—>
—>
—>
—>
— N
) U |=12.8km
—>
>
—>
—> I\IL
_>_> A
) } h=600m v
J L=180km .
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Status and Summary

e Formulation of well-posed Iinitial-boundary problem
v’ Stiff acoustic waves
4 Still working on implicit treatment of gravity waves

U How does 2D implicit gravity waves couple with
3D AMR slow dynamics?

e EB treatment of orography
v'Good results on mountain lee-waves

 AMR

U Not yet, but substantial progress on well-posed
boundary-value problem



Future Work

e Split the gravity waves
e GO to 3D
e Use an AMR framework

e Parallelize the code



First-Aid Kit



Separating Out the Acoustic
Waves: Hodge Decomposition

total velocity

0 0 0
o) Uy O+ 0 u, T u, |0
0] 0 0
div(uy,)=0 curl(u,)=0 div(u,)=0
curl(u,)=0

iIncompressible

compressible



Definitions of Projections

Ug = Po(U)
ljp = Qo (U)
Q, = ;grad(Lp)_ldiv
P = NG
Qo = grad(L,) ™ div
Po =1 - Qg
L, = div& gradH
o []

L, = div(grad)



Definitions of Other Terms

i i Hup +un I°H
Aqu = u.grad(u) — grad
s 7

;grad(n) = —Q,(AqU)

C=p-pPo(z)-7



Separating Out Fast
Gravity Waves
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Outline of Algorithm

Recall: unknows are uy, u,, p, 74 0

Find the eigenvalues and eigenvectors of L,

1. Advance ugy to half time step and to face centers

2. Advance p to half time step and to face centers

3. Partially advance u, using only the advective terms
4. Solve for rfast, u rast

5. Project out instable (fast) modes

6. Solve for auxiliary pressure 1

/. Advance acoustic pressure o implicitly

8. Advance curl-free velocity u,

9. Update p

10. Add missing terms in update for uy






